
Common Relayer Messaging 
for Crosschain Function Calls
Weijia Zhang, Peter Robinson, Aiman Baharna, Susumu Toriumi, Anais Ofranc, Chaals Nevile

IEEE ICBC Crosschain 2023



Abstract

The Crosschain Protocol Stack defines a way for enterprises to create interoperable components for 
crosschain communications. 

Crosschain Applications use Crosschain Function calls to allow business logic to be executed across 
blockchains. 

Components in the Crosschain Function Call layer rely on components in the Crosschain Messaging layer to 
deliver information from one blockchain to another such that the information can be trusted. 

This specification defines the interface that components in the Crosschain Function Call layer can use to 
verify information from other blockchains.



Architecture



Scope

❏ Targets at Ethereum Virtual Machine (EVM) compatible blockchains.

❏ Defines interfaces using the Solidity programming language.

❏ Expects to expand to other programming languages



Relayer workflow

1. User application initiate a crosschain function call across one or more blockchains.

1. The Crosschain Function Call contract on the source blockchain emits an event.

1. Relayer nodes (also known as Attestors or Oracles, or Crosschain bridges) observe the blockchain for 
events being emitted by the Crosschain Function Call contract.

1. The Crosschain Function Call SDK code monitors for the event being emitted. The code calls the 
Crosschain Messaging Layer SDK code to ensure the Crosschain Messaging component knows which 
target blockchains the event will be needed on. The Crosschain Messaging SDK code creates or obtains 
verifiable event information and returns it to the Crosschain Function Call SDK code.

1. The Crosschain Function Call SDK code submits a transaction to the target blockchain, calling the 
Crosschain Function Call contract on the target blockchain. It supplies the event and signature or proof 
information from the Crosschain Messaging Layer SDK code. The Crosschain Function Call contract calls 
the Crosschain Messaging contract for the source blockchain calling decodeAndVerifyEvent. This call 
verifies that the event information did come from the source blockchain and can be trusted.



Relayer workflow (visual)

1) Initiate crosschain functional call 2) Emit event

3)Observe event
4) Obtain and return verifiable 
event information

5) Submit transaction on 
target blockchain

6) Call 
decodeAndVerifyEvent to 
verify that information can be 
trusted



Protocol workflow
1. User application initiate a crosschain function call across one or more blockchains.

1. The Crosschain Function Call contract on the source blockchain emits an event.

1. Relayer nodes (also known as Attestors or Oracles, or Crosschain bridges) observe the blockchain for 
events being emitted by the Crosschain Function Call contract.

1. The Crosschain Function Call SDK code monitors for the event being emitted. The code calls the 
Crosschain Messaging Layer SDK code to ensure the Crosschain Messaging component knows 
which target blockchains the event will be needed on. The Crosschain Messaging SDK code creates 
or obtains verifiable event information and returns it to the Crosschain Function Call SDK code.

1. The Crosschain Function Call SDK code submits a transaction to the target blockchain, calling the 
Crosschain Function Call contract on the target blockchain. It supplies the event and signature or 
proof information from the Crosschain Messaging Layer SDK code. The Crosschain Function Call 
contract calls the Crosschain Messaging contract for the source blockchain calling 
decodeAndVerifyEvent. This call verifies that the event information did come from the source 
blockchain and can be trusted.



Protocol workflow (visual)

1) Initiate crosschain functional call 2) Emit event

3)Observe event
4) Obtain and return verifiable 
event information

5) Submit transaction on 
target blockchain

6) Call 
decodeAndVerifyEvent to 
verify that information can be 
trusted



Interfaces

Solidity Interfaces



Interface parameters
● _blockchainId: The blockchain that emitted the event. This could be used to determine which sets of 

signing keys should be used to verify the signature parameter. The _blockchainId must be in EIP 3220 
format.

● _eventSig: The event function-signature hash. This value is emitted as part of an event. It identifies 
which event was emitted.

● _encodedInfo: The abi.encodePacked of the blockchain identifier (_blockchainId), the Crosschain 
Control 
contract's address, the event function signature (_eventSig), and the event data.

● _signatureOrProof: Signatures or proof information that an implementation can use to check that 

_encodedInfo is valid.



Signature formats



Signature parameters
● by: The 160-bit Ethereum address derived from the 257-bit ECDSA public key of the signer.

● sigR: The ECDSA signature's R value.

● sigS: The ECDSA signature's S value.

● sigV: The ECDSA signature's V value.

● meta: The ECDSA signature's metadata can contain optional information on the platform (e.g. 
Ethereum), curve (e.g. SECP256K1) and hashing function (e.g. KECCAK-256) used to create the 
signature.

● typ: The type of signature or proof. For multiple ECDSA signatures, this is always 0x0001.

● signatures: An array of signatures. The length of the array must match numberOfSignatures.



Implementation creating relaying messages
● Getting blockchain ids

● Get event message information

● Getting signatures

● Package transactions

● Call standardized interface



Implementation creating relaying messages
● //Step 1. Get eventSig

var eventSig = web3_utils.soliditySha3(eventFunc);

● //Step 2. Get encodeInfo
var encodedInfo = web3_utils.encodePacked("'"+blockchainId+"'", "'"+crosschainControlAddr+"'", 
eventSig, eventData);



Implementation creating relaying messages
● //Step 3 Sign EncodedInfo

for (var i=0; i<keys_priv.length; i++) {
var key = ec.keyFromPrivate(keys_priv[i]);

//calculate v from chain_id

var chainid_bn = BigInt(crosschainControlAddr);

var v = BigInt(y_parity)+chainid_bn*BigInt(2)+BigInt(35);

var signa_msg = key.sign(encodedInfo);
var signa = new Signature(crosschainControlAddr, signa_msg.r.toString(), signa_msg.s.toString(), 
v.toString(), 'secp256k1');
signatures.push(signa);
}



Implementation creating relaying messages
● Step 4 Package Signatures

var Signa_record = new Signatures(typ, signatures);

var signatureOrProof = web3_utils.encodePacked(JSON.stringify(Signa_record));

● Step 5 Package Call Crosschaint functions and call Message Relayer Interface



Pending issues and considerations

● Discrepancy of different implementation of relaying messages

● Finality consideration

● Relayer Public key verification



Future Work

● Reference implementation of Relayer specification

● Working framework of crosschain function call framework (Define 
CroshchainExecutor Interface)



Thank you !

Any questions 


